Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy (2024)

1. Sindher S.B., Long A., Chin A.R., Hy A., Sampath V., Nadeau K.C., Chinthrajah R.S. Food allergy, mechanisms, diagnosis and treatment: Innovation through a multi-targeted approach. Allergy. 2022;77:2937–2948. doi:10.1111/all.15418. [PubMed] [CrossRef] [Google Scholar]

2. Peters R.L., Mavoa S., Koplin J.J. An Overview of Environmental Risk Factors for Food Allergy. Int. J. Environ. Res. Public Health. 2022;19:722. doi:10.3390/ijerph19020722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Luo J., Zhang Q., Gu Y., Wang J., Liu G., He T., Che H. Meta-Analysis: Prevalence of Food Allergy and Food Allergens—China, 2000–2021. China CDC Wkly. 2022;4:766–770. doi:10.46234/ccdcw2022.162. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Singh V.P., Sharma J., Babu S., Rizwanulla S.A., Singla A. Role of probiotics in health and disease: A review. J. Pak. Med. Assoc. 2013;63:253–257. [PubMed] [Google Scholar]

5. Di Costanzo M., Carucci L., Canani R.B., Biasucci G. Gut Microbiome Modulation for Preventing and Treating Pediatric Food Allergies. Int. J. Mol. Sci. 2020;21:5275. doi:10.3390/ijms21155275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Steele L., Mayer L., Berin M.C. Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol. Res. 2012;54:75–82. doi:10.1007/s12026-012-8308-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Zhao X., Hogenkamp A., Li X., Chen H., Garssen J., Knippels L.M.J. Role of selenium in IgE mediated soybean allergy development. Crit. Rev. Food Sci. Nutr. 2022:1–9. doi:10.1080/10408398.2022.2039898. [PubMed] [CrossRef] [Google Scholar]

8. Brick T., Hettinga K., Kirchner B., Pfaffl M., Ege M.J. The Beneficial Effect of Farm Milk Consumption on Asthma, Allergies, and Infections: From Meta-Analysis of Evidence to Clinical Trial. J. Allergy Clin. Immunol. Pract. 2019;8:878–889. doi:10.1016/j.jaip.2019.11.017. [PubMed] [CrossRef] [Google Scholar]

9. Sharma S., Kumar P., Betzel C., Singh T.P. Structure and function of proteins involved in milk allergies. J. Chromatogr. B. 2001;756:183–187. doi:10.1016/S0378-4347(01)00107-4. [PubMed] [CrossRef] [Google Scholar]

10. Wu Y., Lu Y., Huang Y., Lin H., Xu M., Ahmed I., Chen G., Chen Y., Li Z. Fish allergens of turbot (Scophthalmus maximus) parvalbumin triggers food allergy via inducing maturation of bone marrow derived dendritic cells and driving Th2 immune response. Food Funct. 2022;13:4194–4204. doi:10.1039/D1FO04070G. [PubMed] [CrossRef] [Google Scholar]

11. Liu R., Krishnan H.B., Xue W., Liu C. Characterization of Allergens Isolated from the Freshwater Fish Blunt Snout Bream (Megalobrama amblycephala) J. Agric. Food Chem. 2010;59:458–463. doi:10.1021/jf103942p. [PubMed] [CrossRef] [Google Scholar]

12. Chiu M.-H., Hou T.-Y., Fan C.-K., Chang J.-H., Lin C.-L., Huang S.-C., Lee Y.-L. Catalpol exerts antiallergic effects in IgE/ovalbumin-activated mast cells and a murine model of ovalbumin-induced allergic asthma. Int. Immunopharmacol. 2021;96:107782. doi:10.1016/j.intimp.2021.107782. [PubMed] [CrossRef] [Google Scholar]

13. Dona D.W., Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int. J. Mol. Sci. 2020;21:5010. doi:10.3390/ijms21145010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Weinberger T., Sicherer S. Current perspectives on tree nut allergy: A review. J. Asthma Allergy. 2018;11:41–51. doi:10.2147/JAA.S141636. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Kudełka W., Kowalska M., Popis M. Quality of Soybean Products in Terms of Essential Amino Acids Composition. Molecules. 2021;26:5071. doi:10.3390/molecules26165071. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Geng T., Stojsin D., Liu K., Schaalje B., Postin C., Ward J., Wang Y.C., Liu Z.L., Li B., Glenn K. Natural Variability of Allergen Levels in Conventional Soybeans: Assessing Variation across North and South America from Five Production Years. J. Agric. Food Chem. 2017;65:463–472. doi:10.1021/acs.jafc.6b04542. [PubMed] [CrossRef] [Google Scholar]

17. Breiteneder H., Mills E.C. Plant food allergens—Structural and functional aspects of allergenicity. Biotechnol. Adv. 2005;23:395–399. doi:10.1016/j.biotechadv.2005.05.004. [PubMed] [CrossRef] [Google Scholar]

18. Lin J., Shewry P.R., Archer D.B., Beyer K., Niggemann B., Haas H., Wilson P., Alcocer M.J. The Potential Allergenicity of Two 2S Albumins from Soybean (Glycine max): A Protein Microarray Approach. Int. Arch. Allergy Immunol. 2006;141:91–102. doi:10.1159/000094535. [PubMed] [CrossRef] [Google Scholar]

19. Hao Y., Zhan Z., Guo P., Piao X., Li D. Soybean β-conglycinin-induced gut hypersensitivity reaction in a piglet model. Arch. Anim. Nutr. 2009;63:188–202. doi:10.1080/17450390902860026. [CrossRef] [Google Scholar]

20. Wang J., Chen W.-D., Wang Y.-D. The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Front. Microbiol. 2020;11:1065. doi:10.3389/fmicb.2020.01065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Meinlschmidt P., Ueberham E., Lehmann J., Schweiggert-Weisz U., Eisner P. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chem. 2016;205:229–238. doi:10.1016/j.foodchem.2016.03.016. [PubMed] [CrossRef] [Google Scholar]

22. Petrova S.Y., Khlgatian S.V., Emel’Yanova O.Y., Pishulina L.A., Berzhets V.M. Current Data about Milk Caseins. Russ. J. Bioorg. Chem. 2022;48:273–280. doi:10.1134/S1068162022020170. [CrossRef] [Google Scholar]

23. Złotkowska D., Stachurska E., Fuc E., Wróblewska B., Mikołajczyk A., Wasilewska E. Differences in Regulatory Mechanisms Induced by β-Lactoglobulin and κ-Casein in Cow’s Milk Allergy Mouse Model–In Vivo and Ex Vivo Studies. Nutrients. 2021;13:349. doi:10.3390/nu13020349. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Zhang Q.-M., Ni W.-W., Li Y., Zhang X., Hou J.-C., Meng X., Li A.-L., Jiang Z.-M. Analysis of altered miRNA profiling in the colon of a mouse model with β-lactoglobulin allergy. Allergol. Immunopathol. 2020;48:666–674. doi:10.1016/j.aller.2020.05.007. [PubMed] [CrossRef] [Google Scholar]

25. Ballegaard A.-S.R., Bøgh K.L. Intestinal protein uptake and IgE-mediated food allergy. Food Res. Int. 2023;163:112150. doi:10.1016/j.foodres.2022.112150. [PubMed] [CrossRef] [Google Scholar]

26. Smith-Norowitz T.A., Bluth M.H. Probiotics and diseases of altered IgE regulation: A short review. J. Immunotoxicol. 2015;13:136–140. doi:10.3109/1547691X.2015.1044053. [PubMed] [CrossRef] [Google Scholar]

27. Pescuma M., Hébert E.M., Rabesona H., Drouet M., Choiset Y., Haertlé T., Mozzi F., de Valdez G.F., Chobert J.-M. Proteolytic action of Lactobacillus delbrueckii subsp. bulgaricus CRL 656 reduces antigenic response to bovine beta-lactoglobulin. Food Chem. 2011;127:487–492. doi:10.1016/j.foodchem.2011.01.029. [PubMed] [CrossRef] [Google Scholar]

28. Kliche T., Li B., Bockelmann W., Habermann D., Klempt M., de Vrese M., Wutkowski A., Clawin-Raedecker I., Heller K.J. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl. Microbiol. Biotechnol. 2017;101:7621–7633. doi:10.1007/s00253-017-8369-3. [PubMed] [CrossRef] [Google Scholar]

29. Wu Y., Lu Y., Huang Y., Wang J., Li S., Xu M., Lin H., Li Z. Comparative Analysis of Glycosylation Affecting Sensitization by Regulating the Cross-Reactivity of Parvalbumins in Turbot (Scophthalmus maximus), Conger Eel (Conger myriaster) and Sea Bass (Micropterus salmoides) J. Agric. Food Chem. 2022;70:10611–10619. doi:10.1021/acs.jafc.2c04423. [PubMed] [CrossRef] [Google Scholar]

30. Tsai C.-L., Perng K., Hou Y.-C., Shen C.-J., Chen I.-N., Chen Y.-T. Effect of species, muscle location, food processing and refrigerated storage on the fish allergens, tropomyosin and parvalbumin. Food Chem. 2023;402:134479. doi:10.1016/j.foodchem.2022.134479. [PubMed] [CrossRef] [Google Scholar]

31. Colquitt A.S., Miles E.A., Calder P.C. Do Probiotics in Pregnancy Reduce Allergies and Asthma in Infancy and Childhood? A Systematic Review. Nutrients. 2022;14:1852. doi:10.3390/nu14091852. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Ugajin T., Kobayashi Y., Takayama K., Yokozeki H. A parvalbumin allergy case was successfully treated with oral immunotherapy using hypoallergenic fish. Allergol. Int. 2021;70:509–511. doi:10.1016/j.alit.2021.03.003. [PubMed] [CrossRef] [Google Scholar]

33. Kirjavainen P.V., Salminen S.J., Isolauri E. Probiotic Bacteria in the Management of Atopic Disease: Underscoring the Importance of Viability. J. Craniofacial Surg. 2003;36:223–227. doi:10.1097/00005176-200302000-00012. [PubMed] [CrossRef] [Google Scholar]

34. Fu L., Fu S., Wang C., Xie M., Wang Y. Yogurt-sourced probiotic bacteria alleviate shrimp tropomyosin-induced allergic mucosal disorders, potentially through microbiota and metabolism modifications. Allergol. Int. 2019;68:506–514. doi:10.1016/j.alit.2019.05.013. [PubMed] [CrossRef] [Google Scholar]

35. Kim B.-G., Kim J.-N., Jang A.-S., Shin M. Combined Effects of Lactobacillus rhamnosus and Egg Oral Immunotherapy in a Mouse Model of Egg Allergy. Allergy Asthma Immunol. Res. 2020;12:701–711. doi:10.4168/aair.2020.12.4.701. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Metugriachuk Y., Tsuchiya J., Marotta F., Kawakita S., Okura R., Kuroi O., Minelli E. Effect of a prebiotic-enriched phytocompound in improving ovalbumin allergenicity. Chin. J. Dig. Dis. 2006;7:206–210. doi:10.1111/j.1443-9573.2006.00267.x. [PubMed] [CrossRef] [Google Scholar]

37. Wang Z., Zhong J., Meng X., Gao J., Li H., Sun J., Li X., Chen H. The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci. Technol. 2021;114:116–132. doi:10.1016/j.tifs.2021.05.021. [CrossRef] [Google Scholar]

38. Azemi N.F.H., Misnan R., Keong B.P., Mokhtar M., Kamaruddin N., Fah W.C., Yadzir Z.H.M., Yadzir H.M., Bakhtiar F., Abdullah N., et al. Molecular and allergenic characterization of recombinant tropomyosin from mud crab Scylla olivacea. Mol. Biol. Rep. 2021;48:6709–6718. doi:10.1007/s11033-021-06661-x. [PubMed] [CrossRef] [Google Scholar]

39. De Silva C., Dhanapala P., King S., Doran T., Tang M., Suphioglu C. Immunological Comparison of Native and Recombinant Hen’s Egg Yolk Allergen, Chicken Serum Albumin (Gal d 5), Produced in Kluveromyces lactis. Nutrients. 2018;10:757. doi:10.3390/nu10060757. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Rigaux P., Daniel C., Ratajczak C., Pot B., Pestel J., Jacquet A. Immunomodulatory Properties of Recombinant Lactic Acid Bacteria Encoding a Major House-dust Mite Allergen. J. Allergy Clin. Immunol. 2006;117:S220. doi:10.1016/j.jaci.2005.12.868. [CrossRef] [Google Scholar]

41. Fuhrmann V., Huang H.-J., Akarsu A., Shilovskiy I., Elisyutina O., Khaitov M., van Hage M., Linhart B., Focke-Tejkl M., Valenta R., et al. From Allergen Molecules to Molecular Immunotherapy of Nut Allergy: A Hard Nut to Crack. Front. Immunol. 2021;12:3641. doi:10.3389/fimmu.2021.742732. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Borres M.P., Sato S., Ebisawa M. Recent advances in diagnosing and managing nut allergies with focus on hazelnuts, walnuts, and cashew nuts. World Allergy Organ. J. 2022;15:100641. doi:10.1016/j.waojou.2022.100641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Tsoukas M.A., Ko B.-J., Witte T.R., Dincer F., Hardman W.E., Mantzoros C.S. Dietary walnut suppression of colorectal cancer in mice: Mediation by miRNA patterns and fatty acid incorporation. J. Nutr. Biochem. 2015;26:776–783. doi:10.1016/j.jnutbio.2015.02.009. [PubMed] [CrossRef] [Google Scholar]

44. Pasquato N., Folli C., Folloni S., Berni R., Cianci M., Helliwell J.R., Zanotti G. The allergenic non-specific lipid transfer protein from peach: Structural studies. Acta Crystallogr. Sect. A Found. Crystallogr. 2005;61:C252. doi:10.1107/S0108767305089257. [CrossRef] [Google Scholar]

45. Kankaanpää P. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett. 2001;194:149–153. doi:10.1111/j.1574-6968.2001.tb09460.x. [PubMed] [CrossRef] [Google Scholar]

46. Liu W., Pu X., Sun J., Shi X., Cheng W., Wang B. Effect of Lactobacillus plantarum on functional characteristics and flavor profile of fermented walnut milk. LWT. 2022;160:113254. doi:10.1016/j.lwt.2022.113254. [CrossRef] [Google Scholar]

47. Tang M.L.K., Ponsonby A.-L., Orsini F., Tey D., Robinson M., Su E.L., Licciardi P., Burks W., Donath S. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J. Allergy Clin. Immunol. 2015;135:737–744. doi:10.1016/j.jaci.2014.11.034. [PubMed] [CrossRef] [Google Scholar]

48. Hol J., van Leer E.H., Schuurman B.E.E., de Ruiter L.F., Samsom J.N., Hop W., Neijens H.J., de Jongste J.C., Nieuwenhuis E.E. The acquisition of tolerance toward cow’s milk through probiotic supplementation: A randomized, controlled trial. J. Allergy Clin. Immunol. 2008;121:1448–1454. doi:10.1016/j.jaci.2008.03.018. [PubMed] [CrossRef] [Google Scholar]

49. Maiga M.A., Morin S., Bernard H., Rabot S., Adel-Patient K., Hazebrouck S. Neonatal mono-colonization of germ-free mice with Lactobacillus casei enhances casein immunogenicity after oral sensitization to cow’s milk. Mol. Nutr. Food Res. 2017;61:1600862. doi:10.1002/mnfr.201600862. [PubMed] [CrossRef] [Google Scholar]

50. Huang C.-H., Lin Y.-C., Jan T.-R. Lactobacillus reuteri induces intestinal immune tolerance against food allergy in mice. J. Funct. Foods. 2017;31:44–51. doi:10.1016/j.jff.2017.01.034. [CrossRef] [Google Scholar]

51. Hyung K.E., Moon B.S., Kim B., Park E.S., Park S.-Y., Hwang K.W. Lactobacillus plantarum isolated from kimchi suppress food allergy by modulating cytokine production and mast cells activation. J. Funct. Foods. 2017;29:60–68. doi:10.1016/j.jff.2016.12.016. [CrossRef] [Google Scholar]

52. Aoki-Yoshida A., Yamada K., Hachimura S., Sashihara T., Ikegami S., Shimizu M., Totsuka M. Enhancement of Oral Tolerance Induction in DO11.10 Mice by Lactobacillus gasseri OLL2809 via Increase of Effector Regulatory T Cells. PLoS ONE. 2016;11:e0158643. doi:10.1371/journal.pone.0158643. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Fu L., Song J., Wang C., Fu S., Wang Y. Bifidobacterium infantis Potentially Alleviates Shrimp Tropomyosin-Induced Allergy by Tolerogenic Dendritic Cell-Dependent Induction of Regulatory T Cells and Alterations in Gut Microbiota. Front. Immunol. 2017;8:1536. doi:10.3389/fimmu.2017.01536. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Domingos-Lopes M., Nagy A., Stanton C., Ross P., Gelencsér E., Silva C. Immunomodulatory activity of exopolysaccharide producing Leuconostoc citreum strain isolated from Pico cheese. J. Funct. Foods. 2017;33:235–243. doi:10.1016/j.jff.2017.03.054. [CrossRef] [Google Scholar]

55. Zhang J., Su H., Li Q., Wu H., Liu M., Huang J., Zeng M., Zheng Y., Sun X. Oral administration of Clostridium butyricum CGMCC0313-1 inhibits β-lactoglobulin-induced intestinal anaphylaxis in a mouse model of food allergy. Gut Pathog. 2017;9:11. doi:10.1186/s13099-017-0160-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Cahenzli J., Köller Y., Wyss M., Geuking M.B., McCoy K.D. Intestinal Microbial Diversity during Early-Life Colonization Shapes Long-Term IgE Levels. Cell Host Microbe. 2013;14:559–570. doi:10.1016/j.chom.2013.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Cristofori F., Dargenio V.N., Dargenio C., Miniello V.L., Barone M., Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021;12:578386. doi:10.3389/fimmu.2021.578386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Sivamaruthi B.S., Kesika P., Suganthy N., Chaiyasut C. A Review on Role of Microbiome in Obesity and Antiobesity Properties of Probiotic Supplements. BioMed Res. Int. 2019;2019:3291367. doi:10.1155/2019/3291367. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Wang W., Luo X., Zhang Q., He X., Zhang Z., Wang X. Bifidobacterium infantis Relieves Allergic Asthma in Mice by Regulating Th1/Th2. Med. Sci. Monit. 2020;26:e920583. doi:10.12659/MSM.920583. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Yang B., Xiao L., Liu S., Liu X., Luo Y., Ji Q., Yang P., Liu Z. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. Am. J. Transl. Res. 2017;9:376–385. [PMC free article] [PubMed] [Google Scholar]

61. Strugnell R.A., Wijburg O.L.C. The role of secretory antibodies in infection immunity. Nat. Rev. Genet. 2010;8:656–667. doi:10.1038/nrmicro2384. [PubMed] [CrossRef] [Google Scholar]

62. Deng M., Wu X., Duan X., Xu J., Yang X., Sheng X., Lou P., Shao C., Lv C., Yu Z. Lactobacillus paracasei L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway. Food Funct. 2021;12:10700–10713. doi:10.1039/D1FO02077C. [PubMed] [CrossRef] [Google Scholar]

63. Co J.Y., Margalef-Català M., Li X., Mah A.T., Kuo C.J., Monack D.M., Amieva M.R. Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions. Cell Rep. 2019;26:2509–2520. doi:10.1016/j.celrep.2019.01.108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Yin Y. Differential proteome analysis along jejunal crypt-villus axis in piglets. Front. Biosci. Landmark. 2016;21:343–363. doi:10.2741/4392. [PubMed] [CrossRef] [Google Scholar]

65. Yan F., Liu L., Cao H., Moore D., Washington M., Wang B., Peek R., Acra S., Polk D. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood. Mucosal Immunol. 2016;10:117–127. doi:10.1038/mi.2016.43. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Wang Y., Gong L., Wu Y.-P., Cui Z.-W., Wang Y.-Q., Huang Y., Zhang X.-P., Li W.-F. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J. Zhejiang Univ. B. 2019;20:180–192. doi:10.1631/jzus.B1800022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Hsiao K., Ponsonby A., Ashley S., Lee C.Y.Y., Jindal L., Tang M.L.K., Loke P., Axelrad C., Pitkin S., Robinson M., et al. Longitudinal antibody responses to peanut following probiotic and peanut oral immunotherapy in children with peanut allergy. Clin. Exp. Allergy. 2022;52:735–746. doi:10.1111/cea.14146. [PubMed] [CrossRef] [Google Scholar]

68. Pagnini C., Di Paolo M.C., Graziani M.G., Fave G.D. Probiotics and Vitamin D/Vitamin D Receptor Pathway Interaction: Potential Therapeutic Implications in Inflammatory Bowel Disease. Front. Pharmacol. 2021;12:747856. doi:10.3389/fphar.2021.747856. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Rajput I.R., Li W.F. Potential Role of Probiotics in Mechanism of Intestinal Immunity. Pak. Vet. J. 2012;32:303–308. [Google Scholar]

70. Yang Y.-H., Qian W., Hou X.-H., Dai C.-B. Bifidobacterium bifidum and Bacteroides fragilis Induced Differential Immune Regulation of Enteric Glial Cells Subjected to Exogenous Inflammatory Stimulation. Inflammation. 2022;45:2388–2405. doi:10.1007/s10753-022-01700-6. [PubMed] [CrossRef] [Google Scholar]

71. Xiao N., Liu F., Zhou G., Sun M., Ai F., Liu Z. Food-specific IgGs Are Highly Increased in the Sera of Patients with Inflammatory Bowel Disease and Are Clinically Relevant to the Pathogenesis. Intern. Med. 2018;57:2787–2798. doi:10.2169/internalmedicine.9377-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Lee M., Chang E.B. Inflammatory Bowel Diseases (IBD) and the Microbiome—Searching the Crime Scene for Clues. Gastroenterology. 2021;160:524–537. doi:10.1053/j.gastro.2020.09.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Vanderpool C., Yan F., Polk B.D. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis. 2008;14:1585–1596. doi:10.1002/ibd.20525. [PubMed] [CrossRef] [Google Scholar]

74. Choi K.-O., Nguyen H.H., Kwak H.-S. The Role of the Immune System in the use of Probiotic Lactic Acid Bacteria in Preventing and Treating Allergic Diseases. Korean J. Food Sci. Anim. Resour. 2010;30:1–12. doi:10.5851/kosfa.2010.30.1.1. [CrossRef] [Google Scholar]

75. Rosser E.C., Piper C.J., Matei D.E., Blair P.A., Rendeiro A.F., Orford M., Alber D.G., Krausgruber T., Catalan D., Klein N., et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells. Cell Metab. 2020;31:837–851. doi:10.1016/j.cmet.2020.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Srikham K., Thirabunyanon M. Bioprophylactic potential of novel human colostrum probiotics via apoptotic induction of colon cancer cells and cell immune activation. Biomed. Pharmacother. 2022;149:112871. doi:10.1016/j.biopha.2022.112871. [PubMed] [CrossRef] [Google Scholar]

77. Komi D.E.A., Wöhrl S., Bielory L. Mast Cell Biology at Molecular Level: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2019;58:342–365. doi:10.1007/s12016-019-08769-2. [PubMed] [CrossRef] [Google Scholar]

78. Kim H., Lee S.-Y., Ji G.E. Timing of Bifidobacterium Administration Influences the Development of Allergy to Ovalbumin in Mice. Biotechnol. Lett. 2005;27:1361–1367. doi:10.1007/s10529-005-3682-9. [PubMed] [CrossRef] [Google Scholar]

79. Kim K.-H., Yang C.-S., Shin A.-R., Jeon S.-R., Park J.-K., Kim H.-J., Jo E.-K. Mycobacterial Heparin-binding Hemagglutinin Antigen Activates Inflammatory Responses through PI3-K/Akt, NF-κB, and MAPK Pathways. Immune Netw. 2011;11:123–133. doi:10.4110/in.2011.11.2.123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018;8:13. doi:10.3389/fcimb.2018.00013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Bosi A., Banfi D., Bistoletti M., Giaroni C., Baj A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int. J. Tryptophan Res. 2020;13:1178646920928984. doi:10.1177/1178646920928984. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399–412. doi:10.1016/j.neuropharm.2016.07.002. [PubMed] [CrossRef] [Google Scholar]

83. Gu Y., Guo X., Sun S., Che H. High-Fat Diet-Induced Obesity Aggravates Food Allergy by Intestinal Barrier Destruction and Inflammation. Int. Arch. Allergy Immunol. 2021;183:80–92. doi:10.1159/000517866. [PubMed] [CrossRef] [Google Scholar]

84. Frontiers Production Office Erratum: Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Front. Cell. Infect. Microbiol. 2021;11:781260. doi:10.3389/fcimb.2021.781260. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Barrea L., Muscogiuri G., Annunziata G., Laudisio D., Pugliese G., Salzano C., Colao A., Savastano S. From gut microbiota dysfunction to obesity: Could short-chain fatty acids stop this dangerous course? Hormones. 2019;18:245–250. doi:10.1007/s42000-019-00100-0. [PubMed] [CrossRef] [Google Scholar]

86. Silva Y.P., Bernardi A., Frozza R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020;11:25. doi:10.3389/fendo.2020.00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Ranjbar R., Vahdati S.N., Tavakoli S., Khodaie R., Behboudi H. Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections. Biomed. Pharmacother. 2021;141:111817. doi:10.1016/j.biopha.2021.111817. [PubMed] [CrossRef] [Google Scholar]

88. Lu Y., Zhang J., Zhang Z., Liang X., Liu T., Yi H., Gong P., Wang L., Yang W., Zhang X., et al. Konjac glucomannan with probiotics acts as a combination laxative to relieve constipation in mice by increasing short-chain fatty acid metabolism and 5-hydroxytryptamine hormone release. Nutrition. 2020;84:111112. doi:10.1016/j.nut.2020.111112. [PubMed] [CrossRef] [Google Scholar]

89. Moghtaderi M., Farjadian S., Kashef S., Alyasin S., Afrasiabi M., Orooj M. Specific IgE to Common Food Allergens in Children with Atopic Dermatitis. Iran. J. Immunol. 2012;9:32–38. [PubMed] [Google Scholar]

90. Jang H., Kim E.G., Kim M., Kim S.Y., Kim Y.H., Sohn M.H., Kim K.W. Metabolomic profiling revealed altered lipid metabolite levels in childhood food allergy. J. Allergy Clin. Immunol. 2021;149:1722–1731. doi:10.1016/j.jaci.2021.10.034. [PubMed] [CrossRef] [Google Scholar]

91. Sartorio M.U.A., Pendezza E., Coppola S., Paparo L., D’Auria E., Zuccotti G.V., Canani R.B. Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients. 2021;14:152. doi:10.3390/nu14010152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Dominguez-Bello M.G., Blaser M.J., Ley R.E., Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 2011;140:1713–1719. doi:10.1053/j.gastro.2011.02.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Yordshahi A.S., Moradi M., Tajik H., Molaei R. Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria—ScienceDirect. Int. J. Food Microbiol. 2020;321:108561. doi:10.1016/j.ijfoodmicro.2020.108561. [PubMed] [CrossRef] [Google Scholar]

94. Rad A.H., Maleki L.A., Kafil H.S., Abbasi A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr. 2021;61:492–499. doi:10.1080/10408398.2020.1738333. [PubMed] [CrossRef] [Google Scholar]

95. González L.A.G., Díez F.A. Mucosal bacterial immunotherapy with MV130 highly reduces the need of tonsillectomy in adults with recurrent tonsillitis. Hum. Vaccines Immunother. 2019;15:2150–2153. doi:10.1080/21645515.2019.1581537. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Tan J., Mckenzie C., Vuillermin P.J., Goverse G., Vinuesa C.G., Mebius R.E., Macia L., Mackay C.R. Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Rep. 2016;15:2809–2824. doi:10.1016/j.celrep.2016.05.047. [PubMed] [CrossRef] [Google Scholar]

97. Mulhall H., Dichiara J.M., Huck O., Amar S. Pasteurized Akkermansia muciniphila reduces periodontal and systemic inflammation induced by Porphyromonas gingivalis in lean and obese mice. J. Clin. Periodontol. 2022;49:717–729. doi:10.1111/jcpe.13629. [PubMed] [CrossRef] [Google Scholar]

98. Santos S.S., Miranda V.C., Trindade L.M., Cardoso V.N., Reis D.C., Cassali G.D., Nicoli J.R., Cara D.C., Martins F.S. Bifidobacterium longum subsp. longum 51A Attenuates Signs of Inflammation in a Murine Model of Food Allergy. Probiotics Antimicrob. Proteins. 2021;15:63–73. doi:10.1007/s12602-021-09846-9. [PubMed] [CrossRef] [Google Scholar]

Advances in the Study of Probiotics for Immunomodulation and Intervention in Food Allergy (2024)

FAQs

Can probiotics help with food allergies? ›

Probiotics are closely associated with intestinal flora, which can colonize the host's intestinal tract to regulate and keep stable intestinal flora. That way, it maintains the intestinal tract's normal physiology, improves the intestinal cell wall barrier, and relieves food allergy symptoms.

What is the role of probiotics in immunomodulation? ›

When consumed, probiotics can positively influence the composition of intestinal microflora and interact with different immune cells, thus improving immune functions [10,11,12,13,14]. It is therefore widely acknowledged that probiotics present health-promoting and immunomodulatory properties [8,15].

Are probiotics a possible strategy for the prevention and treatment of allergies? ›

The beneficial effects of probiotics on allergies include a reduction in hyperreactivity and inflammation due to the presence of allergens, a decrease in interleukins and eosinophils, and a reduction in TNF and INF, etc.

Do probiotics reduce IgE? ›

In addition, probiotics may decrease an antigen-specific IgE levels in serum (88).

Can you build immunity to food allergies? ›

In case of certain allergies, oral tolerance is sometimes arrived at naturally. For example, young children with food allergies like milk and egg often outgrow them by the time they enter school. Another way to restore oral tolerance is by introducing the allergen in gradually increasing doses.

Can healing your gut help with food allergies? ›

Probiotics (substances that promote the proliferation of microorganisms) alleviate food allergy via several mechanisms. They increase the number of commensal gut bacteria that interact with the gut's immune system to help it tolerate food.

Top Articles
Latest Posts
Article information

Author: Mrs. Angelic Larkin

Last Updated:

Views: 6518

Rating: 4.7 / 5 (67 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Mrs. Angelic Larkin

Birthday: 1992-06-28

Address: Apt. 413 8275 Mueller Overpass, South Magnolia, IA 99527-6023

Phone: +6824704719725

Job: District Real-Estate Facilitator

Hobby: Letterboxing, Vacation, Poi, Homebrewing, Mountain biking, Slacklining, Cabaret

Introduction: My name is Mrs. Angelic Larkin, I am a cute, charming, funny, determined, inexpensive, joyous, cheerful person who loves writing and wants to share my knowledge and understanding with you.